447

Advances in Metabolomics Research in Environmental Stress Response in Plants

Piasecka, A., Kachlicki, P., & Stobiecki, M., (2019). Analytical methods for detection of plant

metabolomes changes in response to biotic and abiotic stresses. Int. J. Mol. Sci., 20, 379.

Pyl, E. T., Piques, M., Ivakov, A., Schulze, W., Ishihara, H., Stitt, M., & Sulpice, R., (2012).

Metabolism and growth in Arabidopsis depend on the daytime temperature but are

temperature-compensated against cool nights. Plant Cell, 24, 2443–2469.

Razzaq, A., Sadia, B., Raza, A., Khalid, H. M., & Saleem, F., (2019). Metabolomics: A way

forward for crop improvement. Metabolites, 9, 303.

Ren, S., Ma, K., Lu, Z., Chen, G., Cui, J., Tong, P., Wang, L., et al., (2019). Transcriptomic

and metabolomics analysis of the heat-stress response of Populus tomentosa carr. Forests,

10, 383.

Roberts, L. D., Souza, A. L., Gerszten, R. E., & Clish, C. B., (2012). Targeted metabolomics.

Curr. Protoc. Mol. Biol., 98, 30.

Rouphael, Y., Raimondi, G., Lucini, L., Carillo, P., Kyriacou, M. C., Colla, G., Cirillo, V.,

et al., (2018). Physiological and metabolic responses triggered by omeprazole improve

tomato plant tolerance to NaCl stress. Front Plant Sci., 9, 249.

Salehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H., (2020). Agronomic crop responses and

tolerance to drought stress. In: Agronomic Crops (pp. 63–91). Springer: Berlin/Heidelberg,

Germany.

Sanchez-Martin, J., Canales, F. J., Tweed, J. K. S., Lee, M. R. F., Rubiales, D., Gómez-

Cadenas, A., Arbona, V., et al., (2018). Fatty acid profile changes during gradual soil water

depletion in oats suggests a role for jasmonates in coping with drought. Front Plant Sci.,

9, 1077.

Seo, S. H., Park, S. E., Kim, E. J., Lee, K. I., Na, C. S., & Son, H. S., (2018). A GC-MS based

metabolomics approach to determine the effect of salinity on kimchi. Food Res. Int., 105,

492–498.

Sharma, S. S., & Dietz, K. J., (2006). The significance of amino acids and amino acid-derived

molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot., 57, 711–726.

Shelden, M. C., Dias, D. A., Jayasinghe, N. S., Bacic, A., & Roessner, U., (2016). Root spatial

metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in

response to short-term salt stress. J. Exp. Bot., 67, 3731–3745.

Silvente, S., Sobolev, A. P., & Lara, M., (2012). Metabolite adjustments in drought tolerant

and sensitive soybean genotypes in response to water stress. PLoS One, 7, e38554.

Singh, A., Banerjee, A., & Roychoudhury, A., (2020). Seed priming with calcium compounds

abrogate fluoride-induced oxidative stress by upregulating defense pathways in an indica

rice variety. Protoplasma, 257, 767–782.

Singh, V. P., Singh, S., Kumar, J., & Prasad, S. M., (2015). Investigating the roles of ascorbate­

glutathione cycle and thiol metabolism in arsenate tolerance in ridged luffa seedlings.

Protoplasma, 252, 1217–1229.

Thakur, P., Kumar, S., Malik, J. A., Berger, J. D., & Nayyar, H., (2010). Cold stress effects on

reproductive development in grain crops: An overview. Environ. Exp. Bot., 67, 429–443.

Theodoridis, G., Gika, H., Franceschi, P., Caputi, L., Arapitsas, P., Scholz, M., Masuero, D., et

al., (2012). LC-MS based global metabolite profiling of grapes: Solvent extraction protocol

optimization. Metabolomics, 8, 175–185.

Ullah, A., Sun, H., Yang, X., & Zhang, X., (2017). Drought coping strategies in cotton:

Increased crop per drop. Plant Biotechnol. J., 15, 271–284.